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Edge Elements and the Inclusion Condition

S. Caorsi, P. Fernandes, and M. Raffetto

Abstract—For many years the finite element solution of electro-
magnetic eigenproblems has been corrupted by spurious modes.
This work proves that the inclusion condition is sufficient but not
necessary for the absence of nonzero frequency spurious modes.
This is done by showing through a simple example that edge
elements, a well known spurious-free technique, do not satisfy
the inclusion condition.

1. INTRODUCTION

HE finite element method is widely used to determine

the electromagnetic field within waveguides and cavity
resonators. Unfortunately, the first version of the method based
on nodes did not give reliable results. The computed spectrum
was often corrupted by “spurious modes,” a kind of physically
meaningless numerical eigenfunction [1]-[3].

Various new types of elements able to solve the problem
of spurious modes from a practical point of view have been
invented [4], but a necessary and sufficient condition for the
absence of nonzero frequency spurious modes is still lacking.
Actually, a sufficient condition appeared in [5], but nobody
has either proved or disproved its necessity.

Solving a very simple problem by using an edge element
technique, this work shows that edge elements which are
known to be able to confine all spurious modes at zero
frequency [4], [6] do not satisfy the inclusion condition, and,
as a consequence, this latter is not necessary for the absence
of nonzero frequency spurious modes.

II. DO EDGE ELEMENTS SATISFY THE INCLUSION CONDITION?

Using one of the conclusions obtained by Crowley, Sil-
vester, and Hurwitz [5] it is easy to show that the inclusion
condition is not satisfied by edge elements. Let us consider
the simple problem of finding the eigenmodes at cut-off of
the square waveguide whose cross-section is shown in Fig. 1.
Assume £, = p, = 1 and n x E = 0 on the boundary and
discretize the problem by edge elements using the very simple
mesh also shown in Fig. 1.

The finite element eigensolutions are

B=0,x=[1 1 1 1], =E

=Wi3z + Waz + Wy3 + Wgs, H
E=6,x=[0 1 -1 0], =Eg;

=Was — Wy, 2)
E=6,x=[1 0 0 -1, =E¢>

Manuscript received January 13, 1995.

S. Caorsi 1s with the Department of Electronics, University of Pavia, I-
27100, Pavia, Italy.

P. Fernandes is with the CNR-IMA. 16149 Genoa, Italy.

M. Raffetto 1s with the DIBE-University of Genoa, 16145 Genoa, Italy.

IEEE Log Number 9411824.

do 4 .2 2.2
node \ node b
el eq/
g
\\\ ///1/ 1
node 3 {E‘E)
/él e2™\
node 1 - \ node 2

0,0 Co *

Fig. 1. Cross-section of a square waveguide and discretization used for the
numerical determination of its modes at cut-off

=Wi3 — Wigs, (3)
B2=24,x=[1 -1 -1 1], = Egy
=Wis — Wy — Wy3 4 W3, (4)

where W,; are the usual edge element functions, that is
Wzy :]zj(/\zv)‘_j _)‘]vAl) (5

A, is the Lagrangian function of first order associated with
node ¢ and [, is the length of the edge between nodes ¢ and j.
Now let us consider the scalar function

© = Az2As. ©)

It should be noted that 7/ ¢ is an irrotational eigenmode of
the continuous problem but not of the numerical one. Defining
I as the irrotational space (as defined in [5])

I={C:yxC=0} )
we have
vy € 1. (8)

A simple calculation shows that

(E¢.1, Vo) = / Es, 1(r) - Vo(r)dQ = % ©)
Q
and, as a consequence

E¢, 1 & I(perp)

where I(perp) is defined in [5] as the space of vector fields
orthogonal to I, that is to all the irrotational eigenfunctions of
the continuous problem.

A basic property of standard finite element techniques
guarantees that finite element eigenfunctions belonging to
different eigenvalues are mutually orthogonal. Thus, we have,
in particular

aom

(E6~1, Eo) fnd /Q Eg,l(r) . E()(I‘) dQ = 0 (11)
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Reference [5] defines M as the space spanned by the irrota-
tional vector fields in the finite element trial function space,
and M (perp) as the space of the trial functions orthogonal to
all the elements of M. {Eg} is a basis for M. Thus

M(perp)={A: A €T, (A, Ep) =0} (12)
where T is the space of vector trial functions, and (11) ensures
that

E¢,1 € M(perp). (13)
As a final result, from (10) and (13), we obtain
M(perp) ¢ I(perp). (14)

However, Crowley, Silvester, and Hurwitz [5] obtained the
result that

M (perp) C I(perp) (15)
necessarily follows from the inclusion condition
PTrcT (16)

where PrT is the projection of T on I. Hence, the inclusion
condition is violated by the example and this is enough to
claim that edge elements do not satisfy it.
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1. CONCLUSION

Crowley, Silvester, and Hurwitz have given a “sufficient”
condition [5] for the absence of nonzero frequency spurious
modes, but we have shown that edge elements, one of the most
widely used spurious-free technique, do not satisfy it. Hence,
that condition is not necessary. Therefore, finding a necessary
and sufficient condition for the absence of nonzero frequency
spurious modes is still an open problem, important both from
a theoretical point of view and as a practical test any newly
proposed method should pass.
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